

About the E&P Sound & Marine Life Programme

The ocean is filled with a wide variety of natural and man-made sounds. Since the [early 1990s], there has been increasing environmental and regulatory focus on man-made sounds in the sea and on the effects these sounds may have on marine life. There are now many national and international regimes that regulate how we introduce sound to the marine environment. We believe that effective policies and regulations should be firmly rooted in sound independent science. This allows regulators to make consistent and reasonable regulations while also allowing industries that use or introduce sound to develop effective mitigation strategies.

In 2005, a broad group of international oil and gas companies and the International Association of Geophysical Contractors (IAGC) committed to form a Joint Industry Programme under the auspices of the International Association of Oil and Gas Producers (IOGP) to identify and conduct a research programme that improves understanding of the potential impact of exploration and production sound on marine life. The Objectives of the programme were (and remain):

- 1. To support planning of E&P operations and risk assessments
- 2. To provide the basis for appropriate operational measures that are protective of marine life
- 3. To inform policy and regulation.

The members of the JIP are committed to ensuring that wherever possible the results of the studies it commissions are submitted for scrutiny through publication in peer-reviewed journals. The research papers are drawn from data and information in the contract research report series. Both Contract reports and research paper abstracts (and in many cases full papers) are available from the Programme's web site at www.soundandmarinelife.org.

Disclaimer:

This publication, one of a series of reports on 'standard approaches' to measuring, assuring quality of and reporting of acoustic properties, is an output from the IOGP Joint Industry Programme on E&P Sound and Marine Life ("the JIP"). It is intended that any single report in this series is taken in conjunction with the others in the series. Whilst every effort has been made to ensure the accuracy of the information contained in this publication, neither IOGP nor any of participants in the JIP past, present or future, nor the Contractor appointed to prepare this study warrants its accuracy or will, regardless of its or their negligence, assume liability for any foreseeable use made thereof, whether in whole or in part, which liability is hereby excluded. Consequently such use is at the recipient's own risk on the basis that any use by the recipient constitutes agreement to the terms of this disclaimer. The recipient is obliged to inform any subsequent recipient of such terms.

Contents

1	List of abbreviations	3
2	Introduction	4
3	General terminology	5
4	Quantities derived from sound pressure	7
5	Quantities derived from sound particle displacement	16
6	Quantities derived from sound particle velocity	23
7	Quantities derived from sound particle acceleration	30
8	Correspondence with terminology used in selected publications	37
9	References	44

1 List of abbreviations

Abbreviation	Stands for
CSA	Continental Shelf Associates
DIS	Draft international standard
ISO	International Organization for Standardization
JIP	E&P Sound and Marine Life Joint Industry Programme
TNO	Nederlandse Organisatie voor Toegepast
	Natuurwetenschappelijk Onderzoek (Netherlands
	Organisation for Applied Scientific Research)

2 Introduction

This document is the first deliverable in the project 'Standard Procedures for Underwater Noise Measurements for Activities Related to Offshore Oil and Gas Exploration and Production. Phase I: Processing and Reporting Procedures' carried out by TNO, in collaboration with CSA and Bioacoustics Consulting, for the Sound and Marine Life Joint Industry Programme (JIP). The objectives of this project are [ref TNO proposal "Standard Procedures for Underwater Noise Measurements for Activities Related to Offshore Oil and Gas Exploration and Production. Phase I: Processing and Reporting Procedures, 15 October 2015, TNO-reference DHW-TS-2015-0100209351)]:

- to ensure that processing of selected acoustic metrics such as level, duration, and frequency content ('acoustical processing'), used to describe the characteristics of a sound signal propagating in water, can be analyzed in a consistent and systematic manner;
- to ensure that the results of such acoustical processing can be reported in such a way that the results reported from two or more studies can be appropriately compared;
- 3) to define the correspondence between the acoustic metrics to be reported and metrics used in selected previous scientific publications.

The term "acoustical processing" is used here to mean the conversion from time series (e.g., sound pressure vs. time) to processed metrics such as sound pressure level or sound exposure level. This processing is required to provide metrics that are consistent with one another and with the definitions of [ISO 2016], and thus facilitate like with like comparison.

The main purpose of this document is to provide unambiguous standardized terminology for use in the rest of the project, henceforth referred to as the "Project Terminology". It has been agreed in discussion with the JIP's project support group to supply definitions in terms of the standard terminology of the second DIS [ISO (2016)]. The use of international standard terminology facilitates interpretation and reduces the risk of re-inventing the wheel.

The Project Terminology is introduced in a series of tables in the following categories:

- General terminology (Sec. 3);
- Quantities derived from sound pressure (Sec. 4);
- Quantities derived from sound particle displacement (Sec. 5);
- Quantities derived from sound particle velocity (Sec. 6);
- Quantities derived from sound particle acceleration (Sec. 7).

The Project Terminology is related to selected publications in Sec. 8.

The following conventions are used:

- terms in **bold Arial** font is defined in the Project Dictionary (this document);
- terms in *italic Cambria* font is defined in ISO/DIS 18405.2.

3 General terminology

General terms and concepts for later use are defined in Table 1.

Table 1 General terms.

term	symbol	unit	definition	notes
acoustic signal			sound from a specified	
			source	
acoustic noise			unwanted sound	
background noise			combination of ambient noise	all sound except the
			and acoustic self-noise	acoustic signal
			based on [ISO 2016]	
transient acoustic			acoustic signal from a	
emission			sound source emitting	
			continuously from time t_1 to	
			t_2 , with no <i>sound</i> emitted	
			before t_1 , no <i>sound</i> emitted	
			after t ₂	
transient acoustic			acoustic signal at a	between the start and
signal			specified location from a	end of a transient
			single specified transient	acoustic signal there
transient			acoustic emission	can be periods
				dominated by
				background noise,
				even though the
				source transmits
				sound continuously,
				e.g. due to multipaths
				or periods of low
			_	signal to noise ratio
sound pressure	p	Pa	difference between total	
			pressure and pressure that	
			would exist in the absence of	
			sound	
			source: ISO/DIS 18405.2,	
			2.1.2.3	
sound particle	δ	m	displacement of a material	
displacement			element from what would be	
			its position in the absence of	
			sound waves	
			source: ISO/DIS 18405.2,	
			2.1.2.3	

term	symbol	unit	definition	notes
sound particle	и	m/s	contribution to velocity of a	
velocity			material element caused by	
			the action of sound waves	
			source: ISO/DIS 18405.2,	
			2.1.2.3	
sound particle	а	m/s ²	contribution to acceleration	
acceleration			of a material element caused	
			by the action of sound waves	
			source: ISO/DIS 18405.2, 2.1.2.3	

4 Quantities derived from sound pressure

Quantities derived from sound pressure are defined in Table 2. In this table, the symbol p(t) represents either noise sound pressure, $p(t) = p_{\rm N}(t)$, if there is no signal, or signal plus noise sound pressure, $p(t) = p_{\rm S+N}(t)$, if a signal is present. In the following, the subscripts N, S and S+N are used to mean "noise", "signal" and "signal plus noise", respectively. Definitions applicable to signal only can be obtained by first defining the signal sound pressure as $p_{\rm S}(t) \equiv p_{\rm S+N}(t) - p_{\rm N}(t)$ and then applying the same concepts to a hypothetical sound pressure defined as $p(t) = p_{\rm S}(t)$, which is the sound pressure that would exist if there were no background noise. Definitions obtained in this way are listed in Table 3. In underwater acoustics, quantities are often reported as levels, in decibels. Where applicable, levels of the quantities listed in Table 2 and Table 3 are defined in Table 4 and Table 5, respectively.

Table 2 Quantities derived from sound pressure, applicable to noise only or signal plus noise. Compare Table 3, which defines similar quantities applicable to signal only.

term	symbol	unit	definition	notes
zero-to-peak sound pressure	$p_{0-\mathrm{pk}}$	Pa	greatest magnitude of the sound pressure during a specified time interval, for a specified frequency range source: ISO/DIS 18405.2, 2.1.2.3	
mean-square sound pressure	$\overline{p^2}$	Pa ²	integral over a specified time interval of squared <i>sound pressure</i> , divided by the duration of the time interval, for a specified frequency range source: ISO/DIS 18405.2, 2.1.3.1	
sound pressure exposure	$E_{p,T}$	Pa ² s	integral of the square of the sound pressure, p, over a specified time interval or event, for a specified frequency range source: ISO/DIS 18405.2, 2.1.3.5	
sound pressure exposure spectral density	$E_{p,f}$	Pa ² s/Hz	distribution as a function of frequency of the <i>sound</i> pressure exposure per unit bandwidth of a <i>sound</i> having a continuous spectrum source: ISO/DIS 18405.2, 2.1.3.9	The sound pressure exposure spectral density is a function of positive frequencies. The spectral density so defined is said to be "single-sided".

term	symbol	unit	definition	notes
mean-square	$\overline{p_f^2}$	Pa ² /Hz	distribution as a function of	The mean-square
sound pressure			frequency of the mean-square	sound pressure
spectral density			sound pressure per unit	spectral density is a
			bandwidth of a sound having	function of positive
			a continuous spectrum	frequencies. The
				spectral density so
			source: ISO/DIS 18405.2,	defined is said to be
			2.1.3.13	"single-sided".
				As a consequence of
				the Wiener-Khinchin
				theorem, the mean-
				square sound
				pressure spectral
				density of a sound
				pressure signal is
				also equal to twice
				the Fourier transform
				[ISO 80000-2:2009]
				of the autocorrelation
				function of that signal.
root-mean-square	$p_{ m rms}$	Pa	square root of the mean-	
sound pressure			square sound pressure	

Table 3 Quantities derived from signal sound pressure, applicable to signal only. Compare Table 2, which defines similar quantities applicable to noise and signal plus noise.

term	symbol	unit	definition	notes
signal sound	$p_{ m S}$	Pa	contribution to the sound	If the sound pressure
pressure			pressure from a specified	has sufficiently low
			acoustic signal	amplitude to justify
				non-linear effects, the
				signal sound pressure
				can be calculated as
				$p_{\rm S}(t)$
				$= p_{S+N}(t) - p_N(t).$
				According to Note 1
				to entry 2.1.2.10 of
				ISO 2016, non-linear
				effects may be
				neglected when the
				magnitude of the
				sound particle
				velocity is small
				compared with the
				sound speed.

term	symbol	unit	definition	notes
zero-to-peak	$p_{0-\mathrm{pk,S}}$	Pa	greatest magnitude of the	For a continuous
signal sound			signal sound pressure,	sound, the duration of
pressure			during a specified time	the time interval is
			interval	specified as a fixed
				value, in seconds.
				For a transient , the
				duration of the time
				interval may be
				specified as a fixed
				value, in seconds, or
				as a percentage
				energy pressure
				signal duration, with
				fixed percentage x.
mean-square	$\overline{p_{ m S}^2}$	Pa ²	integral over a specified time	If the signal and noise
signal sound			interval of squared signal	sound pressures are
pressure			sound pressure, divided by	uncorrelated, the
			the duration of the time	mean-square signal
			interval, for a specified	sound pressure for
			frequency range	the signal may be
				estimated using
				$\overline{p_{ m S}^2}pprox\overline{p_{ m S+N}^2}-\overline{p_{ m N}^2}$
				For a continuous
				sound, the duration of
				the time interval is
				specified as a fixed
				value, in seconds.
				For a transient , the
				duration of the time
				interval may be
				specified as a fixed
				value, in seconds, or
				as a percentage
				energy pressure
				signal duration, with
				fixed percentage x.

term	symbol	unit	definition	notes
signal sound pressure exposure	$E_{p,T,S}$	Pa ² s	integral of the square of the signal sound pressure , p_s , over a specified time interval or event, for a specified frequency range	If the signal and noise sound pressures are uncorrelated, the signal sound pressure exposure may be estimated using $E_{p,T,S} \approx E_{p,T,S+N} - E_{p,T,N}$ For a continuous sound, the duration of the time interval is specified as a fixed value, in seconds.
signal sound pressure exposure spectral density	$E_{p,f,S}$	Pa ² s/Hz	distribution as a function of frequency of the sound pressure exposure per unit bandwidth of a signal having a continuous spectrum	Sound pressure exposure spectral density is a property of a transient. The signal sound pressure exposure spectral density is a function of positive frequencies. The spectral density so defined is said to be "single-sided".
mean-square signal sound pressure spectral density	$\overline{p_{f,\mathrm{S}}^2}$	Pa ² /Hz	distribution as a function of frequency of the mean-square sound pressure per unit bandwidth of a signal having a continuous spectrum	Mean-square signal sound pressure spectral density is a property of a continuous sound. The duration of the time interval is specified as a specified as a specified as a fixed value, in seconds. The mean-square signal sound pressure spectral density is a function of positive frequencies. The spectral density so defined is said to be "single-sided".

term	symbol	unit	definition	notes
percentage	$ au_{x\%,p}$	s	time during which a specified	Percentage energy
energy pressure			percentage x of time-	pressure signal
signal duration			integrated squared signal	duration is a property
			sound pressure occurs	of a transient signal.
			Based on ISO/DIS 18405.2,	
			2.5.1.5	
signal pressure	J_p	Pa s	pressure impulse of a	
impulse			transient acoustic signal	

Table 4 Levels of quantities derived from sound pressure, applicable to noise only or signal plus noise, selected where appropriate from Table 2. Compare Table 5, which defines similar quantities applicable to signal only.

term	symbol	unit	definition	notes
zero-to-peak sound pressure	$L_{p,0-pk}$	dB	level of the zero to peak sound pressure	
level			In equation form: $L_{p,0-\mathrm{pk}} = 10\log_{10}\frac{p_{0-\mathrm{pk}}^2}{p_0^2}\mathrm{dB}$	
			$\frac{L_{p,0-pk} - 10 \log_{10} \frac{1}{p_0^2}}{Reference value}$	
			$p_0 = 1 \mu\text{Pa}$	
			$p_0^2 = 1 \mu \text{Pa}^2$	
			Based on ISO/DIS 18405.2, 2.2.2.1	
mean-square	L_p	dB	level of the mean-square	
sound pressure level			sound pressure	
			In equation form:	
			$L_p = 10 \log_{10} \frac{\overline{p^2}}{p_0^2} dB$	
			Reference value:	
			$p_0 = 1 \mu Pa$	
			$p_0^2 = 1 \mu Pa^2$	
			Based on ISO/DIS 18405.2, 2.2.1.1	
sound pressure exposure level	$L_{E,p}$	dB	level of the sound pressure exposure	
			In equation form:	
			$L_{E,p} = 10 \log_{10} \frac{E_p}{E_{p,0}} dB$	
			Reference value:	
			$E_{p,0}^{1/2} = 1 \mu\text{Pa} $	
			$E_{p,0} = 1 \mu\text{Pa}^2\text{s}$	
			Based on ISO/DIS 18405.2, 2.2.1.5	
sound pressure	$L_{E,p,f}$	dB	level of the sound pressure	
exposure spectral density level			exposure spectral density	
			In equation form:	
			$L_{E,p,f} = 10 \log_{10} \frac{E_{p,f}}{E_{p,f,0}} dB$	

term	symbol	unit	definition	notes
			Reference value: $E_{p,f,0}^{1/2}=1~\mu \text{Pa}~\text{s}^{\frac{1}{2}}/\text{Hz}^{\frac{1}{2}}$ $E_{p,f,0}=1~\mu \text{Pa}^2~\text{s}/\text{Hz}$ Based on ISO/DIS 18405.2, 2.2.1.9	
mean-square signal sound pressure spectral density level	$L_{p,f}$	dB	level of the mean-square sound pressure spectral density	
			Reference value: $p_{f,0}=1~\mu {\rm Pa}~/{\rm Hz}^{\frac{1}{2}}$ $p_{f,0}^2=1~\mu {\rm Pa}^2/{\rm Hz}$ Based on ISO/DIS 18405.2, 2.2.1.10	

Table 5 Levels of quantities derived from signal sound pressure, applicable to signal only, selected where appropriate from Table 3. Compare Table 4, which defines similar quantities applicable to noise and signal plus noise.

term	symbol	unit	definition	notes
zero to peak	$L_{p,0-pk,S}$	dB	level of the zero to peak	
signal sound			signal sound pressure	
pressure level				
			In equation form:	
			$L_{p,0-\text{pk},S} = 10 \log_{10} \frac{p_{0-\text{pk},S}^2}{p_0^2} dB$	
			Reference value:	
			$p_0 = 1 \mu Pa$	
			$p_0^2 = 1 \mu Pa^2$	
mean-square	$L_{p,S}$	dB	level of the mean-square	
signal sound			signal sound pressure	
pressure level				
			In equation form:	
			$L_{p,S} = 10 \log_{10} \frac{\overline{p_S^2}}{p_0^2} dB$	
			Reference value:	
			$p_0 = 1 \mu Pa$	
			$p_0^2 = 1 \mu \text{Pa}^2$	
signal sound	$L_{E,p,S}$	dB	level of the signal sound	

term	symbol	unit	definition	notes
pressure			pressure exposure	
exposure level				
			In equation form:	
			$L_{E,p,S} = 10 \log_{10} \frac{E_{p,S}}{E_{p,0}} dB$	
			Reference value:	
			$E_{p,0}^{1/2} = 1 \mu \text{Pa s}^{\frac{1}{2}}$	
			$E_{p,0} = 1 \mu \text{Pa}^2 \text{s}$	
signal sound	$L_{E,p,f,S}$	dB	level of the signal sound	
pressure			pressure exposure	
exposure spectral density level			spectral density	
			In equation form:	
			$L_{E,p,f,S} = 10 \log_{10} \frac{E_{p,f,S}}{E_{p,f,0}} dB$	
			Reference value:	
			$E_{p,f,0}^{1/2} = 1 \mu\text{Pa} \text{s}^{\frac{1}{2}}/\text{Hz}^{\frac{1}{2}}$	
			$E_{p,f,0} = 1 \mu\text{Pa}^2 \text{s/Hz}$	
mean-square	$L_{p,f,S}$	dB	level of the mean-square	
signal sound			signal sound pressure	
pressure spectral density level			spectral density	
			In equation form:	
			$L_{p,f,S} = 10 \log_{10} \frac{\overline{p_{f,S}^2}}{p_{f,0}^2} dB$	
			$L_{p,f,S} = 10 \log_{10} \frac{1}{p_{f,0}^2} \text{dB}$	
			Reference value:	
			$p_{f,0}=1$ μPa $/ ext{Hz}^{rac{1}{2}}$ $p_{f,0}^2=1$ μPa $^2/ ext{Hz}$	

To some extent the information contained in Table 2 to Table 5 is generic, in the sense that the definitions are applicable to other scalar quantities. Corresponding definitions are listed in Secs. 5 to 7 for each of sound particle displacement, velocity and acceleration, generalized as needed to cope with the vector nature of these quantities. Some quantities are needed only for sound pressure, and such quantities are defined in Table 6.

Table 6 Quantities derived from signal sound pressure. The quantities listed in this table are needed for the specific reasons described in the notes column. They are not required for particle motion metrics.

term	symbol	unit	definition	notes
90% transient signal	$ au_{90\%,p}$	s	percentage energy	needed for Wyatt
sound pressure			pressure signal duration of	2008 (see
duration			a transient acoustic signal,	
			with $x = 90$	Table 21)
zero to peak signal	$p_{ au}$	Pa/s	zero-to-peak sound pressure of	this quantity is
sound pressure to			a transient acoustic signal	needed for the draft
pulse duration ratio			divided by the 90% transient	NOAA guidelines of
			signal sound pressure	July 2015 [NOAA
			duration of that transient	2015]; it is not used in
			acoustic signal	the final guidelines of
				July 2016 [NOAA
				2016]

5 Quantities derived from sound particle displacement

Quantities derived from sound particle displacement are defined in Table 7. In this table, the symbol $\delta(t)$ represents either noise sound particle displacement, $\delta(t) = \delta_{\rm N}(t)$, if there is no signal, or signal plus noise sound particle displacement, $\delta(t) = \delta_{\rm S+N}(t)$, if a signal is present. Definitions applicable to signal only can be obtained by first defining the signal sound particle displacement as $\delta_{\rm S}(t) \equiv \delta_{\rm S+N}(t) - \delta_{\rm N}(t)$ and applying the same concepts to a hypothetical sound particle displacement defined as $\delta(t) = \delta_{\rm S}(t)$, which is the sound particle displacement that would exist if there were no background noise. Definitions obtained in this way are listed in Table 8. In underwater acoustics, quantities are often reported as levels, in decibels. Where applicable, levels of the quantities listed in Table 7 and Table 8 are defined in Table 9 and Table 10, respectively.

Table 7 Quantities derived from sound particle displacement, applicable to noise only or signal plus noise. Compare Table 8, which defines similar quantities applicable to signal only.

term	symbol	unit	definition	notes
zero-to-peak sound particle displacement	$\delta_{0-\mathrm{pk}}$	m	greatest magnitude of the sound particle displacement during a specified time interval	
mean-square sound particle displacement	$\overline{\delta^2}$	m²	integral over a specified time interval of squared magnitude of the <i>sound particle displacement</i> , divided by the duration of the time interval, for a specified frequency range source: ISO/DIS 18405.2, 2.1.3.2	
sound particle displacement exposure	$E_{\delta T}$	m² s	integral of the square of the magnitude of the <i>sound</i> particle displacement, δ, over a specified time interval or event, for a specified frequency range source: ISO/DIS 18405.2, 2.1.3.6	
sound particle displacement exposure spectral density	$E_{oldsymbol{\delta},f}$	m ² s/Hz	distribution as a function of frequency of the sound particle displacement exposure per unit bandwidth of a sound having a continuous spectrum based on: ISO/DIS 18405.2, 2.1.3.9	The sound particle displacement exposure spectral density is a function of positive frequencies. The spectral density so defined is said to be "single-sided".

term	symbol	unit	definition	notes
mean-square	$\overline{\delta_f^2}$	m²/Hz	distribution as a function of	The mean-square
sound particle			frequency of the mean-square	sound particle
displacement			sound particle displacement	displacement spectral
spectral density			per unit bandwidth of a sound	density is a function
			having a continuous	of positive
			spectrum	frequencies. The
				spectral density so
			based on: ISO/DIS 18405.2,	defined is said to be
			2.1.3.13	"single-sided".
root-mean-square	$\delta_{ m rms}$	m	square root of the mean-	
sound particle			square sound particle	
displacement			displacement	

Table 8 Quantities derived from signal sound particle displacement, applicable to signal only. Compare Table 7, which defines similar quantities applicable to noise and signal plus noise.

term	symbol	unit	definition	notes
signal sound	$oldsymbol{\delta}_{\mathrm{S}}$	m	contribution to the sound	Signal sound particle
particle			particle displacement from	displacement is a vector
displacement			a specified acoustic	quantity.
			signal	
				If the sound particle
				displacement has
				sufficiently low
				amplitude to justify non-
				linear effects, the signal
				sound particle
				displacement can be
				calculated as
				$\boldsymbol{\delta}_{\mathrm{S}}(t) = \boldsymbol{\delta}_{\mathrm{S+N}}(t) - \boldsymbol{\delta}_{\mathrm{N}}(t).$
				According to Note 1 to
				entry 2.1.2.10 of ISO
				2016, non-linear effects
				may be neglected when
				the magnitude of the
				sound particle velocity
				is small compared with
				the sound speed.
zero-to-peak	$\delta_{\mathrm{0-pk,S}}$	m	greatest magnitude of the	For a continuous sound,
signal sound			signal sound particle	the duration of the time
particle			displacement, during a	interval is specified as a
displacement			specified time interval	fixed value, in seconds.
				For a transient , the
				duration of the time
				interval may be
				specified as a fixed
				value, in seconds, or as
				a percentage energy

term	symbol	unit	definition	notes
	-			displacement signal duration, with fixed percentage <i>x</i> .
mean-square signal sound particle displacement	$\overline{\delta_{ ext{S}}^{2}}$	m ²	integral over a specified time interval of squared signal sound particle displacement, divided by the duration of the time interval, for a specified frequency range	If the signal and noise sound particle displacements are uncorrelated, the meansquare signal sound particle displacement for the signal may be estimated using $\overline{\delta_S^2} \approx \overline{\delta_{S+N}^2} - \overline{\delta_N^2}$ For a continuous sound, the duration of the time interval is specified as a fixed value, in seconds. For a transient , the duration of the time interval may be specified as a fixed value, in seconds, or as a percentage energy displacement signal
signal sound particle displacement exposure	$E_{\mathcal{S},T,S}$	m² s	integral of the square of the magnitude of the signal sound particle displacement, δ, over a specified time interval or event, for a specified frequency range	duration, with fixed percentage x . If the signal and noise particle displacements are uncorrelated, the signal sound particle displacement exposure may be estimated using $E_{\delta,T,S} \approx E_{\delta,T,S+N} - E_{\delta,T,N}$ For a continuous sound, the duration of the time interval is specified as a fixed value, in seconds.
signal sound particle displacement exposure spectral density	$E_{\delta,f,S}$	m² s/Hz	distribution as a function of frequency of the sound particle displacement exposure per unit bandwidth of a signal having a continuous spectrum	Sound particle displacement exposure spectral density is a property of a transient. The signal sound particle displacement

term	symbol	unit	definition	notes
				exposure spectral density is a function of positive frequencies. The spectral density so defined is said to be "single-sided".
mean-square signal sound particle displacement spectral density	$\overline{\delta_{f,S}^2}$	m ² /Hz	distribution as a function of frequency of the mean-square sound particle displacement per unit bandwidth of a signal having a continuous spectrum	Mean-square signal sound particle displacement spectral density is a property of a continuous sound. The duration of the time interval is specified as a specified as a fixed value, in seconds. The mean-square signal sound particle displacement spectral density is a function of positive frequencies. The spectral density so defined is said to be "single-sided".
percentage energy displacement signal duration	$ au_{\chi\%,\delta}$	s	time during which a specified percentage <i>x</i> of signal sound particle displacement exposure occurs	Percentage energy displacement signal duration is a property of a transient signal.
signal displacement impulse	J_{δ}	m s	integral of the sound particle displacement, over a specified time interval or event, for a specified frequency range of a transient acoustic signal	signal displacement impulse is a vector quantity

Table 9 Levels of quantities derived from sound particle displacement, applicable to noise only or signal plus noise, selected where appropriate from Table 7. Compare Table 10, which defines similar quantities applicable to signal only.

symbol	unit	definition	notes
$L_{\delta,0-pk}$	dB	level of the zero to peak	
		sound particle	
		displacement	
		In equation form: $L_{\delta,0-\mathrm{pk}} = 10\log_{10}\frac{\delta_{0-\mathrm{pk}}^2}{\delta_0^2}\mathrm{dB}$	
	$L_{\delta,0- m pk}$	$L_{\delta,0- m pk}$ dB	sound particle displacement In equation form:

term	symbol	unit	definition	notes
			$\delta_0 = 1 \text{ pm}$	
			$\delta_0^2 = 1 \text{ pm}^2$	
			Based on ISO/DIS 18405.2,	
			2.2.2.1	
mean-square	L_{δ}	dB	level of the mean-square	
sound particle			sound particle	
displacement level			displacement	
			In equation form:	
			$L_{\delta} = 10 \log_{10} \frac{\overline{\delta^2}}{\delta_0^2} dB$	
			$L_{\delta} = 10 \log_{10} \delta_0^2 \text{ dB}$	
			Reference value:	
			$\delta_0 = 1 \text{ pm}$	
			$\delta_0^2 = 1 \text{ pm}^2$	
			Based on ISO/DIS 18405.2,	
sound particle	$L_{E,\delta}$	dB	2.2.1.1 level of the sound particle	
displacement	-E,0		displacement exposure	
exposure level				
			In equation form:	
			$L_{E,\delta} = 10 \log_{10} \frac{E_{\delta}}{E_{\delta,0}} dB$	
			Reference value:	
			$E_{\delta,0}^{1/2} = 1 \text{ pm s}^{\frac{1}{2}}$	
			$E_{\delta,0} = 1 \text{ pm}^2 \text{ s}$	
			Based on ISO/DIS 18405.2,	
			2.2.1.5	
sound particle	$L_{E,\delta,f}$	dB	level of the sound particle	
displacement exposure spectral			displacement exposure spectral density	
density level			spectral delisity	
,			In equation form:	
			$L_{E,\delta,f} = 10 \log_{10} \frac{E_{\delta,f}}{E_{\delta,f,0}} dB$	
			$^{L}\delta,f,0$	
			Reference value:	
			$E_{\delta,f,0}^{1/2} = 1 \text{ pm s}^{\frac{1}{2}}/\text{Hz}^{\frac{1}{2}}$	
			$E_{\delta,f,0} = 1 \text{ pm}^2 \text{ s/Hz}$	
			Based on ISO/DIS 18405.2,	
mean-square	$L_{\delta,f}$	dB	2.2.1.9 level of the mean-square	
signal sound	0,3		sound particle	
particle			displacement spectral	

term	symbol	unit	definition	notes
displacement			density	
spectral density				
level			In equation form:	
			$L_{\delta,f} = 10 \log_{10} \frac{\overline{\delta_f^2}}{\delta_{f,0}^2} dB$	
			Reference value: $\delta_{f,0}=1~\mathrm{pm/Hz^{\frac{1}{2}}}$ $\delta_{f,0}^{2}=1~\mathrm{pm^{2}/Hz}$	
			Based on ISO/DIS 18405.2,	
			2.2.1.10	

Table 10 Levels of quantities derived from signal sound particle displacement, applicable to signal only, selected where appropriate from Table 8. Compare Table 9, which defines similar quantities applicable to noise and signal plus noise.

term	symbol	unit	definition	notes
zero to peak	$L_{\delta,0- ext{pk,S}}$	dB	level of the zero to peak	
signal sound			signal sound particle	
particle			displacement	
displacement level				
			In equation form:	
			$L_{\delta,0-\text{pk},S} = 10 \log_{10} \frac{\delta_{0-\text{pk},S}^2}{\delta_0^2} dB$	
			Reference value:	
			$\delta_0 = 1 \text{ pm}$	
			$\delta_0^2 = 1 \text{ pm}^2$	
mean-square	$L_{\delta,S}$	dB	level of the mean-square	
signal sound			signal sound particle	
particle			displacement	
displacement level				
			In equation form:	
			$L_{\delta,S} = 10 \log_{10} \frac{\overline{\delta_{S}^{2}}}{\delta_{0}^{2}} dB$	
			Reference value:	
			$\delta_0 = 1 \text{ pm}$	
			$\delta_0^2 = 1 \text{ pm}^2$	
signal sound	$L_{E,\delta,S}$	dB	level of the signal sound	
particle			particle displacement	
displacement			exposure	
exposure level				
			In equation form:	
			$L_{E,\delta,S} = 10 \log_{10} \frac{E_{\delta,S}}{E_{\delta,0}} dB$	
			Reference value:	
			$E_{\delta,0}^{1/2} = 1 \text{ pm } \text{ s}^{\frac{1}{2}}$	
			$E_{\delta,0} = 1 \text{ pm}^2 \text{ s}$	

term	symbol	unit	definition	notes
signal sound	$L_{E,\delta,f,S}$	dB	level of the signal sound	
particle			particle displacement	
displacement			exposure spectral density	
exposure spectral				
density level			In equation form:	
			$L_{E,\delta,f,S} = 10 \log_{10} \frac{E_{\delta,f,S}}{E_{\delta,f,0}} dB$	
			Reference value:	
			$E_{\delta,f,0}^{1/2} = 1 \text{ pm } \text{ s}^{\frac{1}{2}}/\text{Hz}^{\frac{1}{2}}$	
			$E_{\delta,f,0} = 1 \text{ pm}^2 \text{ s/Hz}$	
mean-square	$L_{\delta,f,S}$	dB	level of the mean-square	
signal sound			signal sound particle	
particle			displacement spectral	
displacement			density	
spectral density				
level			In equation form: $\frac{1}{s^2}$	
			$L_{\delta,f,S} = 10 \log_{10} \frac{\overline{\delta_{f,S}^2}}{\delta_{f,0}^2} dB$	
			Reference value:	
			$\delta_{f,0} = 1 \text{ pm/Hz}^{\frac{1}{2}}$	
			$\delta_{f,0}^2 = 1 \text{ pm}^2/\text{Hz}$	

6 Quantities derived from sound particle velocity

Quantities derived from sound particle velocity are defined in Table 11. In this table, the symbol $\delta(t)$ represents either noise sound particle velocity, $u(t) = u_{\rm N}(t)$, if there is no signal, or signal plus noise sound particle velocity, $u(t) = u_{\rm S+N}(t)$, if a signal is present. Definitions applicable to signal only can be obtained by first defining the signal sound particle velocity as $u_{\rm S}(t) \equiv u_{\rm S+N}(t) - u_{\rm N}(t)$ and applying the same concepts to a hypothetical sound particle velocity defined as $u(t) = u_{\rm S}(t)$, which is the sound particle velocity that would exist if there were no background noise. Definitions obtained in this way are listed in Table 12. In underwater acoustics, quantities are often reported as levels, in decibels. Where applicable, levels of the quantities listed in Table 11 and Table 12 are defined in Table 13 and Table 14, respectively.

Table 11 Quantities derived from sound particle velocity, applicable to noise only or signal plus noise. Compare Table 12, which defines similar quantities applicable to signal only.

term	symbol	unit	definition	notes
zero-to-peak sound particle velocity	u_{0-pk}	m/s	greatest magnitude of the sound particle velocity during a specified time interval	
mean-square sound particle velocity	$\overline{u^2}$	(m/s) ²	integral over a specified time interval of squared magnitude of the sound particle velocity, divided by the duration of the time interval, for a specified frequency range source: ISO/DIS 18405.2, 2.1.3.2	
sound particle velocity exposure	Eu,T	(m/s) ² s	integral of the square of the magnitude of the sound particle velocity, u , over a specified time interval or event, for a specified frequency range source: ISO/DIS 18405.2, 2.1.3.6	
sound particle velocity exposure spectral density	$E_{u,f}$	(m/s) ² s/Hz	distribution as a function of frequency of the sound particle velocity exposure per unit bandwidth of a sound having a continuous spectrum based on: ISO/DIS 18405.2, 2.1.3.9	The sound particle velocity exposure spectral density is a function of positive frequencies. The spectral density so defined is said to be "single-sided".

term	symbol	unit	definition	notes
mean-square	$\overline{u_f^2}$	(m/s) ² /	distribution as a function of	The mean-square
sound particle		Hz	frequency of the mean-square	sound particle
velocity spectral			sound particle velocity per unit	velocity spectral
density			bandwidth of a sound having	density is a function
			a continuous spectrum	of positive
				frequencies. The
			based on: ISO/DIS 18405.2,	spectral density so
			2.1.3.13	defined is said to be
				"single-sided".
root-mean-square	$u_{ m rms}$	m/s	square root of the mean-	
sound particle			square sound particle velocity	
velocity				

Table 12 Quantities derived from signal sound particle velocity, applicable to signal only.

Compare Table 11, which defines similar quantities applicable to noise and signal plus noise.

term	symbol	unit	definition	notes
signal sound particle velocity	u _S	m/s	contribution to the sound particle velocity from a specified acoustic signal	notes Signal sound particle velocity is a vector quantity. If the sound particle velocity has sufficiently low amplitude to justify non-linear effects, the signal sound particle velocity can be calculated as
				$\mathbf{u}_{\mathrm{S}}(t) = \mathbf{u}_{\mathrm{S+N}}(t) - \mathbf{u}_{\mathrm{N}}(t).$ According to Note 1 to entry 2.1.2.10 of ISO 2016, non-linear effects may be neglected when the magnitude of the sound particle velocity is small compared with the sound speed.
zero-to-peak signal sound particle velocity	<i>u</i> _{0-pk,S}	m/s	greatest magnitude of the signal sound particle velocity , during a specified time interval	For a continuous sound, the duration of the time interval is specified as a fixed value, in seconds. For a transient, the
				duration of the time interval may be specified as a fixed value, in seconds, or as a percentage energy velocity signal duration,

term	symbol	unit	definition	notes
	- 2	1 1 2	., , , , , , , , , , , , , , , , , , ,	with fixed percentage x.
mean-square signal sound particle velocity	$\overline{u_{\mathrm{S}}^2}$	(m/s) ²	integral over a specified time interval of squared signal sound particle velocity, divided by the duration of the time interval, for a specified frequency range	If the signal and noise sound particle velocities are uncorrelated, the mean-square signal sound particle velocity for the signal may be estimated using $\overline{u_{\rm S}^2} \approx \overline{u_{\rm S+N}^2} - \overline{u_{\rm N}^2}$ For a continuous sound, the duration of the time interval is specified as a fixed value, in seconds.
				For a transient , the duration of the time interval may be specified as a fixed value, in seconds, or as a percentage energy velocity signal duration, with fixed percentage <i>x</i> .
signal sound particle velocity exposure	$E_{u,T,S}$	(m/s) ² s	integral of the square of the magnitude of the signal sound particle velocity, <i>u</i> , over a specified time interval or event, for a specified frequency range	If the signal and noise particle velocities are uncorrelated, the signal sound particle velocity exposure may be estimated using $E_{u,T,S} \approx E_{u,T,S+N} - E_{u,T,N}$ For a continuous sound, the duration of the time
signal sound	$E_{u,f,S}$	(m/s) ²	distribution as a function	interval is specified as a fixed value, in seconds. Sound particle velocity
particle velocity exposure spectral density	Lu,f,S	s/Hz	of frequency of the sound particle velocity exposure per unit bandwidth of a signal having a continuous spectrum	exposure spectral density is a property of a transient. The signal sound particle velocity exposure spectral density is a function of positive frequencies. The spectral density so defined is said to be

term	symbol	unit	definition	notes
				"single-sided".
mean-square signal sound particle velocity spectral density	$\overline{u_{f,S}^2}$	(m/s) ² / Hz	distribution as a function of frequency of the mean-square sound particle velocity per unit bandwidth of a signal having a continuous spectrum	Mean-square signal sound particle velocity spectral density is a property of a continuous sound. The duration of the time interval is specified as a specified as a fixed value, in seconds.
				The mean-square signal sound particle velocity spectral density is a function of positive frequencies. The spectral density so defined is said to be "single-sided".
percentage energy velocity signal duration	$ au_{x\%,u}$	S	time during which a specified percentage <i>x</i> of signal sound particle velocity exposure occurs	Percentage energy velocity signal duration is a property of a transient signal.
signal velocity impulse	J_u	(m/s) s	integral of the sound particle velocity, over a specified time interval or event, for a specified frequency range of a transient acoustic signal	signal velocity impulse is a vector quantity

Table 13 Levels of quantities derived from sound particle velocity, applicable to noise only or signal plus noise, selected where appropriate from Table 11. Compare Table 12, which defines similar quantities applicable to signal only.

term	symbol	unit	definition	notes
zero-to-peak	$L_{u,0-pk}$	dB	level of the zero to peak	
sound particle			sound particle velocity	
velocity level				
			In equation form:	
			$L_{u,0-\text{pk}} = 10 \log_{10} \frac{u_{0-\text{pk}}^2}{u_0^2} dB$	
			Reference value:	
			$u_0 = 1 \text{ nm/s}$	
			$u_0^2 = 1 \text{ (nm/s)}^2$	
			Based on ISO/DIS 18405.2,	
			2.2.2.1	
mean-square	L_u	dB	level of the mean-square	
sound particle			sound particle velocity	
velocity level				

term	symbol	unit	definition	notes
			In equation form:	
			$L_u = 10 \log_{10} \frac{\overline{u^2}}{u_0^2} dB$	
			u^2	
			Reference value:	
			$u_0 = 1 \text{ nm/s}$	
			$u_0^2 = 1 \text{ (nm/s)}^2$	
			Based on ISO/DIS 18405.2,	
sound particle	$L_{E,u}$	dB	2.2.1.1 level of the sound particle	
velocity exposure	-E,u		velocity exposure	
level				
			In equation form:	
			$L_{E,u} = 10 \log_{10} \frac{E_u}{E_{u,0}} dB$	
			$u_{i,0}$	
			Reference value:	
			$E_{u,0}^{1/2} = 1 \text{ (nm/s) } s^{\frac{1}{2}}$	
			$E_{u,0} = 1 \text{ (nm/s)}^2 \text{ s}$	
			Based on ISO/DIS 18405.2,	
sound particle	$L_{E,u,f}$	dB	2.2.1.5 level of the sound particle	
velocity exposure	ΣE,u,j	GB	velocity exposure spectral	
spectral density			density	
level				
			In equation form:	
			$L_{E,u,f} = 10 \log_{10} \frac{E_{u,f}}{E_{u,f,0}} dB$	
			wij 10	
			Reference value:	
			$E_{u,f,0}^{1/2} = 1 \text{ (nm/s) } s^{\frac{1}{2}}/\text{Hz}^{\frac{1}{2}}$	
			$E_{u,f,0} = 1 (\text{nm/s})^2 \text{s/Hz}$	
			B 1 100/510 1-1	
			Based on ISO/DIS 18405.2, 2.2.1.9	
mean-square	$L_{u,f}$	dB	level of the mean-square	
signal sound	,		sound particle velocity	
particle velocity			spectral density	
spectral density			In advation forms	
level			In equation form: $\frac{\overline{u^2}}{u^2}$	
			$L_{u,f} = 10 \log_{10} \frac{\overline{u_f^2}}{u_{f,0}^2} dB$	
			Reference value:	
			$u_{f,0} = 1 (\text{nm/s})/\text{Hz}^{\frac{1}{2}}$	
			$u_{f,0}^2 = 1 (\text{nm/s})^2/\text{Hz}$	

term	symbol	unit	definition	notes
			Based on ISO/DIS 18405.2, 2.2.1.10	

Table 14 Levels of quantities derived from signal sound particle velocity, applicable to signal only, selected where appropriate from Table 12. Compare Table 13, which defines similar quantities applicable to noise and signal plus noise.

term	symbol	unit	definition	notes
zero to peak signal sound particle velocity level	$L_{u,0-pk,S}$	dB	level of the zero to peak signal sound particle velocity In equation form: $L_{u,0-\mathrm{pk},\mathrm{S}} = 10\log_{10}\frac{u_{0-\mathrm{pk},\mathrm{S}}^2}{u_0^2}\mathrm{dB}$ Reference value: $u_0 = 1\mathrm{nm/s}$ $u_0^2 = 1(\mathrm{nm/s})^2$	
mean-square signal sound particle velocity level	$L_{u,S}$	dB	level of the mean-square signal sound particle velocity In equation form: $L_{u,S} = 10 \log_{10} \frac{\overline{u_S^2}}{u_0^2} \mathrm{dB}$ Reference value: $u_0 = 1 \mathrm{nm/s}$ $u_0^2 = 1 (\mathrm{nm/s})^2$	
signal sound particle velocity exposure level	$L_{E,u,S}$	dB	level of the signal sound particle velocity exposure In equation form: $L_{E,u,S} = 10\log_{10}\frac{E_{u,S}}{E_{u,0}}\mathrm{dB}$ Reference value: $E_{u,0}^{1/2} = 1\;(\mathrm{nm/s})\;\mathrm{s}^{\frac{1}{2}}$ $E_{u,0} = 1\;(\mathrm{nm/s})^2\;\mathrm{s}$	
signal sound particle velocity exposure spectral density level	$L_{E,u,f,S}$	dB	level of the signal sound particle velocity exposure spectral density $L_{E,u,f,S} = 10 \log_{10} \frac{E_{u,f,S}}{E_{u,f,0}} \mathrm{dB}$ Reference value:	

term	symbol	unit	definition	notes
			$E_{u,f,0}^{1/2} = 1 \text{ (nm/s)} s^{\frac{1}{2}}/\text{Hz}^{\frac{1}{2}}$	
			$E_{u,f,0} = 1 (\text{nm/s})^2 \text{s/Hz}$	
mean-square	$L_{u,f,S}$	dB	level of the mean-square	
signal sound			signal sound particle	
particle velocity			velocity spectral density	
spectral density				
level			In equation form:	
			$L_{u,f,S} = 10 \log_{10} \frac{u_{f,S}^2}{u_{f,0}^2} dB$	
			Reference value:	
			$u_{f,0} = 1 \text{ (nm/s)/Hz}^{\frac{1}{2}}$ $u_{f,0}^2 = 1 \text{ (nm/s)}^2\text{/Hz}$	
			$u_{f,0}^2 = 1 (\text{nm/s})^2 / \text{Hz}$	

7 Quantities derived from sound particle acceleration

Quantities derived from sound particle acceleration are defined in Table 15. In this table, the symbol $\delta(t)$ represents either noise sound particle acceleration, $a(t) = a_{\rm N}(t)$, if there is no signal, or signal plus noise sound particle acceleration, $a(t) = a_{\rm S+N}(t)$, if a signal is present. Definitions applicable to signal only can be obtained by first defining the signal sound particle acceleration as $a_{\rm S}(t) \equiv a_{\rm S+N}(t) - a_{\rm N}(t)$ and applying the same concepts to a hypothetical sound particle acceleration defined as $a(t) = a_{\rm S}(t)$, which is the sound particle acceleration that would exist if there were no background noise. Definitions obtained in this way are listed in Table 16. In underwater acoustics, quantities are often reported as levels, in decibels. Where applicable, levels of the quantities listed in Table 15 and Table 16 are defined in Table 17 and Table 18, respectively.

Table 15 – Quantities derived from sound particle acceleration, applicable to noise only or signal plus noise. Compare Table 16, which defines similar quantities applicable to signal only.

term	symbol	unit	definition	notes
zero-to-peak sound particle	a_{0-pk}	m/s ²	greatest magnitude of the sound particle acceleration	
acceleration			during a specified time interval	
mean-square sound particle	$\overline{a^2}$	(m/s ²) ²	integral over a specified time interval of squared	
acceleration			magnitude of the sound	
			particle acceleration, divided	
			by the duration of the time	
			interval, for a specified	
			frequency range	
			source: ISO/DIS 18405.2,	
			2.1.3.2	
sound particle	$E_{a,T}$	(m/s ²) ²	integral of the square of the	
acceleration		s	magnitude of the sound	
exposure			particle acceleration, a , over	
			a specified time interval or event, for a specified	
			frequency range	
			100/010 40405 0	
			source: ISO/DIS 18405.2, 2.1.3.6	
sound particle	$E_{a,f}$	(m/s ²) ²	distribution as a function of	The sound particle
acceleration	,	s/Hz	frequency of the sound	acceleration exposure
exposure spectral			particle acceleration exposure	spectral density is a
density			per unit bandwidth of a sound	function of positive
			having a continuous	frequencies. The
			spectrum	spectral density so
				defined is said to be

term	symbol	unit	definition	notes
			based on: ISO/DIS 18405.2,	"single-sided".
			2.1.3.9	
mean-square	$\overline{a_f^2}$	$(m/s^2)^2/$	distribution as a function of	The mean-square
sound particle		Hz	frequency of the mean-square	sound particle
acceleration			sound particle acceleration	acceleration spectral
spectral density			per unit bandwidth of a sound	density is a function
			having a continuous	of positive
			spectrum	frequencies. The
				spectral density so
			based on: ISO/DIS 18405.2,	defined is said to be
			2.1.3.13	"single-sided".
root-mean-square	$a_{ m rms}$	m/s ²	square root of the mean-	
sound particle			square sound particle	
acceleration			acceleration	

Table 16 Quantities derived from signal sound particle acceleration, applicable to signal only.

Compare Table 15, which defines similar quantities applicable to noise and signal plus noise.

term	symbol	unit	definition	notes
signal sound	$a_{\rm S}$	m/s ²	contribution to the	Signal sound particle
particle			sound particle	acceleration is a vector
acceleration			acceleration from a	quantity.
			specified acoustic	
			signal	If the sound particle
				acceleration has sufficiently
				low amplitude to justify non-
				linear effects, the signal
				sound particle acceleration
				can be calculated as
				$\mathbf{a}_{S}(t) = \mathbf{a}_{S+N}(t) - \mathbf{a}_{N}(t).$
				According to Note 1 to
				entry 2.1.2.10 of ISO 2016,
				non-linear effects may be
				neglected when the
				magnitude of the sound
				particle velocity is small
				compared with the sound
				speed.
zero-to-peak	$a_{0-pk,S}$	m/s ²	greatest magnitude of	For a continuous sound,
signal sound			the signal sound	the duration of the time
particle			particle acceleration,	interval is specified as a
acceleration			during a specified time	fixed value, in seconds.
			interval	
				For a transient , the
				duration of the time interval
				may be specified as a fixed
				value, in seconds, or as a
				percentage energy
				acceleration signal

term	symbol	unit	definition	notes
				duration, with fixed
				percentage x.
mean-square	$\overline{a_{\rm S}^2}$	$(m/s^2)^2$	integral over a	If the signal and noise
signal sound			specified time interval	sound particle
particle			of squared signal	accelerations are
acceleration			sound particle	uncorrelated, the mean-
			acceleration, divided	square signal sound
			by the duration of the	particle acceleration for the
			time interval, for a	signal may be estimated
			specified frequency	using
			range	$\overline{u_{\rm S}^2} pprox \overline{u_{\rm S+N}^2} - \overline{u_{\rm N}^2}$
				$u_{S} \sim u_{S+N} - u_{N}$
				For a continuous sound,
				the duration of the time
				interval is specified as a
				fixed value, in seconds.
				For a transient , the
				duration of the time interval
				may be specified as a fixed
				value, in seconds, or as a
				percentage energy
				acceleration signal
				duration, with fixed percentage <i>x</i> .
signal sound	$E_{a,T,S}$	(m/s ²) ²	integral of the square	If the signal and noise
particle	u,1 ,5	S	of the magnitude of the	particle accelerations are
acceleration			signal sound particle	uncorrelated, the signal
exposure			acceleration, a, over a	sound particle acceleration
			specified time interval	exposure may be estimated
			or event, for a specified	using
			frequency range	
				$E_{u,T,S} \approx E_{u,T,S+N} - E_{u,T,N}$
				For a continuous sound,
				the duration of the time
				interval is specified as a
				fixed value, in seconds.
signal sound	$E_{a,f,S}$	(m/s ²) ²	distribution as a	Sound particle acceleration
particle	,, ,-	s/Hz	function of frequency of	exposure spectral density is
acceleration			the sound particle	a property of a transient .
exposure spectral			acceleration	
density			exposure per unit	The signal sound particle
			bandwidth of a signal	acceleration exposure
			having a continuous	spectral density is a
			spectrum	function of positive
				frequencies. The spectral
				density so defined is said to

term	symbol	unit	definition	notes
				be "single-sided".
mean-square signal sound particle acceleration spectral density	$\overline{a_{f,\mathrm{S}}^2}$	(m/s ²) ² / Hz	distribution as a function of frequency of the mean-square sound particle acceleration per unit bandwidth of a signal having a continuous spectrum	Mean-square signal sound particle acceleration spectral density is a property of a continuous sound. The duration of the time interval is specified as a specified as a fixed value, in seconds.
				The mean-square signal sound particle acceleration spectral density is a function of positive frequencies. The spectral density so defined is said to be "single-sided".
percentage energy acceleration signal duration	$ au_{x\%,a}$	S	time during which a specified percentage <i>x</i> of signal sound particle acceleration exposure occurs	Percentage energy acceleration signal duration is a property of a transient signal.
signal acceleration impulse	Ja	(m/s²) s	integral of the sound particle acceleration, over a specified time interval or event, for a specified frequency range of a transient acoustic signal	signal acceleration impulse is a vector quantity

Table 17 Levels of quantities derived from sound particle acceleration, applicable to noise only or signal plus noise, selected where appropriate from Table 15. Compare Table 18, which defines similar quantities applicable to signal only.

term	symbol	unit	definition	notes
zero-to-peak	$L_{a,0-pk}$	dB	level of the zero to peak	
sound particle			sound particle acceleration	
acceleration level				
			In equation form:	
			$L_{a,0-pk} = 10 \log_{10} \frac{a_{0-pk}^2}{a_0^2} dB$	
			Reference value:	
			$a_0 = 1 \mu \text{m/s}^2$	
			$a_0 = 1 \mu\text{m/s}^2$ $a_0^2 = 1 (\mu\text{m/s}^2)^2$	
			Based on ISO/DIS 18405.2,	
			2.2.2.1	
mean-square	L_a	dB	level of the mean-square	
sound particle			sound particle acceleration	
acceleration level				

term	symbol	unit	definition	notes
			In equation form:	
			$L_a = 10 \log_{10} \frac{\overline{a^2}}{a_0^2} dB$	
			a_0^2	
			Reference value:	
			$a_0 = 1 \mu \text{m/s}^2$	
			$a_0^2 = 1 (\mu \text{m/s}^2)^2$	
			DI 100/DI0 40405 0	
			Based on ISO/DIS 18405.2, 2.2.1.1	
sound particle	$L_{E,a}$	dB	level of the sound particle	
acceleration			acceleration exposure	
exposure level				
			In equation form: E_a	
			$L_{E,a} = 10 \log_{10} \frac{E_a}{E_{a,0}} dB$	
			Reference value:	
			$E_{a,0}^{1/2} = 1 \; (\mu \text{m/s}^2) \; \text{s}^{\frac{1}{2}}$ $E_{a,0} = 1 \; (\mu \text{m/s}^2)^2 \; \text{s}$	
			$E_{a,0} - 1 (\mu \text{m/s}) s$	
			Based on ISO/DIS 18405.2,	
			2.2.1.5	
sound particle	$L_{E,a,f}$	dB	level of the sound particle	
acceleration			acceleration exposure	
exposure spectral density level			spectral density	
			In equation form:	
			$L_{E,a,f} = 10 \log_{10} \frac{E_{a,f}}{E_{a,f,0}} dB$	
			$E_{a,f,0}$	
			Reference value:	
			$E_{a,f,0}^{1/2} = 1 (\mu \text{m/s}^2) \text{s}^{\frac{1}{2}}/\text{Hz}^{\frac{1}{2}}$	
			$E_{a,f,0} = 1 (\mu \text{m/s}^2)^2 \text{s/Hz}$	
			Based on ISO/DIS 18405.2,	
mean-square	$L_{a,f}$	dB	2.2.1.9 level of the mean-square	
signal sound	и, ј		sound particle acceleration	
particle			spectral density	
acceleration			In advation form	
spectral density level			In equation form: $\frac{\overline{a_{\epsilon}^2}}{a_{\epsilon}^2}$	
.5.5.			$L_{a,f} = 10 \log_{10} \frac{a_f^2}{a_{f,0}^2} dB$	
			J , 0	
			Reference value:	
			$a_{f,0} = 1 (\mu \text{m/s}^2) / \text{Hz}^{\frac{1}{2}}$	
			$a_{f,0}^2 = 1 (\mu \text{m/s}^2)^2 / \text{Hz}$	

term	symbol	unit	definition	notes
			Based on ISO/DIS 18405.2,	
			2.2.1.10	

Table 18 Levels of quantities derived from signal sound particle acceleration, applicable to signal only, selected where appropriate from Table 16. Compare Table 17, which defines similar quantities applicable to noise and signal plus noise.

term	symbol	unit	definition	notes
zero to peak	$L_{a,0-pk,S}$	dB	level of the zero to peak	
signal sound			signal sound particle	
particle			acceleration	
acceleration level				
			In equation form:	
			$L_{a,0-\text{pk,S}} = 10 \log_{10} \frac{a_{0-\text{pk,S}}^2}{a_0^2} dB$	
			U	
			Reference value:	
			$a_0 = 1 \mu\text{m/s}^2$	
	7	-ID	$a_0^2 = 1 (\mu \text{m/s}^2)^2$	
mean-square	$L_{a,S}$	dB	level of the mean-square	
signal sound			signal sound particle	
particle acceleration level			acceleration	
acceleration level			In equation form:	
			$L_{a,S} = 10 \log_{10} \frac{a_S^2}{a_0^2} dB$	
			Reference value:	
			$a_0 = 1 \mu\text{m/s}^2$	
			$a_0^2 = 1 (\mu \text{m/s}^2)^2$	
signal sound	$L_{E,a,S}$	dB	level of the signal sound	
particle			particle acceleration	
acceleration			exposure	
exposure level				
			In equation form:	
			$L_{E,a,S} = 10 \log_{10} \frac{E_{a,S}}{E_{a,0}} dB$	
			Reference value:	
			$E_{a,0}^{1/2} = 1 (\mu \text{m/s}^2) \text{s}^{\frac{1}{2}}$	
			$E_{a,0} = 1 (\mu \text{m/s}^2)^2 \text{s}^2$ $E_{a,0} = 1 (\mu \text{m/s}^2)^2 \text{s}^2$	
signal sound	$L_{E,a,f,S}$	dB	level of the signal sound	
particle			particle acceleration	
acceleration			exposure spectral density	
exposure spectral				
density level			In equation form:	
			$L_{E,a,f,S} = 10 \log_{10} \frac{E_{a,f,S}}{E_{a,f,0}} dB$	
			Reference value:	
			$E_{a,f,0}^{1/2} = 1 (\mu \text{m/s}^2) \text{s}^{\frac{1}{2}} / \text{Hz}^{\frac{1}{2}}$	
	l	l	$L_{a,f,0} - I(\mu \Pi I/5) S^2/\Pi Z^2$	

term	symbol	unit	definition	notes
			$E_{a,f,0} = 1 (\mu \text{m/s}^2)^2 \text{s/Hz}$	
mean-square	$L_{a,f,S}$	dB	level of the mean-square	
signal sound			signal sound particle	
particle			acceleration spectral	
acceleration			density	
spectral density				
level			In equation form:	
			$L_{a,f,S} = 10 \log_{10} \frac{\overline{a_{f,S}^2}}{a_{f,0}^2} dB$	
			Reference value:	
			$a_{f,0} = 1 (\mu \text{m/s}^2) / \text{Hz}^{\frac{1}{2}}$ $a_{f,0}^2 = 1 (\mu \text{m/s}^2)^2 / \text{Hz}$	
			$a_{f,0}^2 = 1 (\mu \text{m/s}^2)^2 / \text{Hz}$	

8 Correspondence with terminology used in selected publications

Prior to ISO 18405 (ISO, 2016) there was no recognized formal standardization in underwater acoustical terminology. As a result, different publications have employed different terms for the same concepts, and in some cases different meanings for the same terms. Interpretation of any publication is facilitated by relating its terminology to a standard terminology. In this section the terminology of selected key or frequently referenced publications is related to the standard Project Terminology of this report. In particular, two influential review papers have been selected, namely Southall et al. 2007 and Popper et al. 2014. Each was written by a team of acknowledged experts, one on the impact of sound on aquatic mammals (Southall et al. 2007 – henceforth abbreviated S2007), and the second on the impact of sound on fishes and turtles (Popper et al. 2014 – henceforth abbreviated P2014). The terminology used by these two review publications is related to the Project Terminology in Table 19 and Table 20. The authors of the present report include one co-author of each of S2007 (DRK) and P2014 (MBH). To ensure accurate representation of S2007 and P2014 terminology, DRK and MBH have reviewed Table 19 and Table 20 respectively, in consultation where appropriate with their original co-authors.

In addition to the two peer-reviewed papers, a third publication (Wyatt 2008) was selected as being of special interest to the JIP because it described sources of relevance to the oil and gas industry. See Table 21.

Table 19 List of terms from Southall et al. 2007 (S2007), related to the Project Terminology.

	T .	
standard name, including	S2007 name, including	notes
standard synonyms, symbols	synonyms, symbols	
and abbreviations	and abbreviations,	
	where relevant	
2.1.2.1	instantaneous sound	
sound pressure	pressure	
p	P(t)	
2.1.2.3	peak sound pressure	
zero-to-peak sound pressure peak sound pressure	P _{max}	
$p_{ m pk}$		
$p_{0 ext{-pk}}$		
2.1.2.8	peak-to-peak sound	
peak-to-peak sound pressure	pressure	
$p_{ m pk-pk}$		
2.1.3.1	mean-squared pressure	
mean-square sound pressure		
$\overline{p^2}$		
2.1.3.5	sound exposure	Sound exposure is defined on
sound pressure exposure	E(t)	p499 of S2007 as an
time-integrated squared sound		unweighted quantity
pressure		synonymous with time-integrated
sound exposure		squared sound pressure.

standard name, including standard synonyms, symbols and abbreviations	S2007 name, including synonyms, symbols and abbreviations, where relevant	notes
$E_{p,T}$		In addition the term "sound exposure" is also used throughout S2007 in the alternative sense of "exposure to sound". We emphasize the need to clarify whether the sound exposure is evaluated at a specified fixed receiver position or at a moving receiver, for specified receiver motion. In principle the "receiver" might be an animal, a man-made receiver, or an animat.
2.2.1.1 mean-square sound pressure level sound pressure level SPL L _{p,rms} L _p	root-mean-square (RMS) SPL	The shorthand "dB SPL" is used by S2007 to indicate a value of mean-square sound pressure level, expressed in decibels; i.e., to the mean pressure over a defined duration. The use of "mean-square SPL" as an abbreviation for mean-square sound pressure level is deprecated by ISO (2016). If one wishes to avoid spelling out the name "mean-square sound pressure level" in full, correct alternatives given by ISO (2016) are "sound pressure level" and "SPL", all of which are synonymous.
2.2.1.5 time-integrated squared sound pressure level sound exposure level sound pressure exposure level SEL $L_{E,p}$	sound exposure level SEL	Most commonly, sound exposure level (abbreviated SEL) in S2007 refers to the total received sound exposure, in principle unweighted, and expressed as a level in dB re 1 µPa² s. However, it is used in S2007 to refer to both weighted and unweighted quantities.

standard name, including standard synonyms, symbols and abbreviations	S2007 name, including synonyms, symbols and abbreviations, where relevant	notes
2.2.2.1 peak sound pressure level zero-to-peak sound pressure level L _{p,pk} L _{p,0-pk}	peak SPL	In Tables 3 (p443) and 5 (p452), the shorthand "dB re: 1 μPa (peak) (flat)" is used by S2007 to indicate a value of <i>zero-to-peak sound pressure level</i> , expressed in decibels. This is the level of the maximum magnitude of the sound pressure, specifically applicable for intense signals of short rise time and short duration, such as impulse sounds.
		The use of "peak SPL" as an abbreviation for <i>peak sound</i> pressure level is deprecated by ISO (2016). To avoid confusion between peak sound pressure level (level of the peak sound pressure) and maximum sound pressure level (peak value of SPL), it is preferable to spell out the name "peak sound pressure level" in full.
2.7.1.4 weighted sound exposure level weighted sound pressure exposure level SELw LE,p,w	sound exposure level SEL	In S2007, SEL is sometimes used as a synonym of the unweighted quantity time-integrated squared sound pressure level (see 2.2.1.5 above). On other occasions it is used as a weighted quantity. See for example the remark on p444: "As for the single pulse criteria, peak pressures are unweighted (i.e., "flat-weighted"), but SEL should be weighted by the appropriate M-weighting function (Figure 1)." When used in this way, the weighted quantity is sometimes referred to as "weighted SEL", or similar (e.g. p442, 445, and 451). When not stated explicitly in this way (see e.g., Tables 3 (p443) and 5 (p452), specifying

standard name, including standard synonyms, symbols and abbreviations	S2007 name, including synonyms, symbols and abbreviations,	notes
	where relevant	
		the risk thresholds for injury and
		behavioral response, as
		proposed by S2007), it is
		instead indicated by the notation
		"dB re: 1 μPa²-s (<mxx>)",</mxx>
		where <mxx> indicates one of</mxx>
		the M-weighting functions M _{If} ,
		M _{mf} , M _{hf} , M _{pw} , as described by
		S2007. More specifically, for
		weighted sound exposure, the
		frequency weighting function
		used in S2007 is given by
		$w(f) = w_{\text{aud}}(f) = 10^{\frac{M(f)}{10 \text{ dB}}}, \text{ where}$
		M(f) is given by Eqs. (7) and (8)
		of S2007.

Table 20 List of terms from Popper et al. 2014 (P2014), related to the Project Terminology.

standard name, including standard synonyms, symbols and abbreviations	P2014 name, including synonyms, symbols and abbreviations, where relevant	notes
2.1.2.3 zero-to-peak sound pressure peak sound pressure ppk p0-pk	peak sound pressure	
2.1.2.9 sound particle displacement δ	particle displacement	
2.1.2.10 sound particle velocity <i>u</i>	particle velocity	
2.1.2.11 sound particle acceleration <i>a</i>	particle acceleration	
2.2.1.1 mean-square sound pressure level sound pressure level SPL L _{p,rms} L _p	rms sound pressure level	The shorthand "dB rms" is used by P2014 in Tables 7.5 ff to indicate a value of this quantity, expressed in decibels. The use of "mean-square SPL" as an abbreviation for <i>mean-square sound pressure level</i> is deprecated by ISO (2016). In the y-axis label of Figs 3.2 and 3.3, the hearing threshold for rms sound pressure level is abbreviated as "Sound Pressure Threshold"
2.2.1.5 time-integrated squared sound pressure level sound exposure level sound pressure exposure level SEL $L_{E,p}$	sound exposure level SEL	In P2014, sound exposure level (SEL) is an unweighted quantity, synonymous with 2.2.1.5 time-integrated squared sound pressure level. The shorthand "dB SEL _{cum} " is used by P2014 in Tables 7.3 ff to indicate a value of cumulative sound exposure level, expressed in decibels.

standard name, including standard synonyms, symbols and abbreviations	P2014 name, including synonyms, symbols and abbreviations, where relevant	notes
2.2.2.1 peak sound pressure level zero-to-peak sound pressure level $L_{p,\mathrm{pk}}$ $L_{p,0\text{-pk}}$	peak sound pressure level SPL _{peak}	In Tables 7.2, 7.3 and 7.4 of P2014, the shorthand "dB peak" is used to indicate a value of zero-to-peak sound pressure level, expressed in decibels. The use of "peak SPL" as an abbreviation for peak sound pressure level is deprecated by ISO (2016).
root-mean-square sound pressure	root-mean-square (rms) sound pressure	root-mean-square sound pressure is defined in Table 2
zero-to-peak sound particle velocity	peak particle velocity peak velocity	zero-to-peak sound particle velocity is defined in Table 11

Table 21 List of terms from Wyatt 2008 (W2008), related to the Project Terminology.

standard name, including standard synonyms, symbols and abbreviations	W2008 name, including synonyms, symbols and abbreviations, where relevant	notes
2.1.2.3 zero-to-peak sound pressure peak sound pressure ppk po-pk	peak pressure	On pp 40-43, W2008 uses the term "peak pressure" as a synonym of 2.1.2.3 zero-to-peak sound pressure The same term is also used by W2008 as a level, synonymous with zero-to-peak sound pressure level (see 2.2.2.1 below).
2.2.1.1 mean-square sound pressure level sound pressure level SPL L _{p,rms} L _p	equivalent continuous sound level L_{eq} or sound pressure level SPL	The term "equivalent continuous sound level" is used by W2008 as a synonym of unweighted sound pressure level. The use of "mean-square SPL" as an abbreviation for <i>mean-square sound pressure level</i> is deprecated by ISO (2016).
2.2.1.5 time-integrated squared sound pressure level sound exposure level sound pressure exposure level SEL L _{E,p}	sound exposure level SEL	This term is used by W2008 to indicate an unweighted quantity, i.e., with the <i>frequency weighting</i> function given by $w(f) = 1$.
2.2.2.1 peak sound pressure level zero-to-peak sound pressure level L _{p,pk} L _{p,0-pk} DEPRECATED: peak SPL	peak pressure	W2008 defines the term "peak pressure" on p82 as "the instantaneous maximum of the absolute sound pressure, in dB re 1 µPa" synonymous with peak sound pressure level. It is used in this sense on p19 (Table 3.2.) and p45. The same term is also used by W2008 as to mean zero-to-peak sound pressure (see 2.1.2.3 above).
90% transient signal sound pressure duration	pulse duration	W2008 defines "pulse duration" as "the time interval between the arrival of 5% and 95% of the total pulse energy measured in seconds." We assume that "energy" in this definition refers to the sound pressure exposure, making it consistent with the requirements of July 2016 US criteria (NOAA 2016).

9 References

- ISO (2016). ISO/DIS 18405.2 Underwater acoustics Terminology, April 2016. Available from http://www.iso.org/iso/catalogue_detail.htm?csnumber=62406, last accessed 5 April 2016.
- NOAA (2015) DRAFT Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammal Hearing, Underwater Acoustic Threshold Levels for Onset of Permanent and Temporary Threshold Shifts, Revised version for Second Public Comment Period, 23 July 2015.
- NOAA (2016) National Oceanic and Atmospheric Administration (NOAA) 2016, Technical Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammal Hearing Underwater Acoustic Thresholds for Onset of Permanent and Temporary Threshold Shifts, NOAA Technical Memorandum NMFS-OPR-55, July 2016.
- Popper et al. (2014). Arthur N. Popper, Anthony D. Hawkins, Richard R. Fay, David A. Mann, Soraya Bartol, Thomas J. Carlson, Sheryl Coombs, William T. Ellison, Roger L. Gentry, Michele B. Halvorsen, Svein Løkkeborg, Peter H. Rogers, Brandon L. Southall, David G. Zeddies, William N. Tavolga (2014). ASA S3/SC1. 4 TR-2014 Sound Exposure Guidelines for Fishes and Sea Turtles: A Technical Report Prepared by ANSI-Accredited Standards Committee S3/SC1 and Registered with ANSI. Springer.
- Southall et al. (2007). Brandon L. Southall, Ann E. Bowles, William T. Ellison, James J. Finneran, Roger L. Gentry, Charles R. Greene Jr., David Kastak, Darlene R. Ketten, James H. Miller, Paul E. Nachtigall, W. John Richardson, Jeanette A. Thomas, & Peter L. Tyack. (2007). Aquatic mammals, 33(4), 411.
- Wyatt (2008). Review of existing data on underwater sounds produced by the O&G industry. Issue 1, R Wyatt, (Seiche Measurements Ltd, Great Torrington, UK, 2008).

